Replication efforts suggest ‘smoking gun’ evidence isn’t enough to prove quantum computing claims

A group of scientists, including Sergey Frolov, professor of physics at the University of Pittsburgh, and co-authors from Minnesota and Grenoble have undertaken several replication studies centered around topological effects in nanoscale superconducting or semiconducting devices. This field is important because it can bring about topological quantum computing, a hypothetical way of storing and manipulating

Unexpected oscillation states in magnetic vortices could enable coupling across different physical systems

Researchers at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) have uncovered previously unobserved oscillation states—so-called Floquet states—in tiny magnetic vortices. Unlike earlier experiments, which required energy-intensive laser pulses to create such states, the team in Dresden discovered that a subtle excitation with magnetic waves is sufficient.Quantum Physics NewsRead More

Entanglement enhances the speed of quantum simulations, transforming long-standing obstacles into a powerful advantage

Researchers from the Faculty of Engineering at The University of Hong Kong (HKU) have made a significant discovery regarding quantum entanglement. This phenomenon, which has long been viewed as a significant obstacle in classical quantum simulations, actually enhances the speed of quantum simulations. The findings are published in Nature Physics in an article titled “Entanglement