Controlling electron interference in time with chirped laser pulses
In quantum mechanics, particles such as electrons act like waves and can even interfere with themselves—a striking and counterintuitive feature that defies our classical view of reality. We know this kind of interference happens in space, where different paths can overlap and combine, but what if we could take it further? What if we could
Quantum scars boost electron transport and drive the development of microchips
Quantum physics often reveals phenomena that defy common sense. A new theory of quantum scarring deepens our understanding of the connection between the quantum world and classical mechanics, sheds light on earlier findings and marks a step forward toward future technological applications.Quantum Physics NewsRead More