Efficient cooling method could enable chip-based quantum computers

Quantum computers could rapidly solve complex problems that would take the most powerful classical supercomputers decades to unravel. But they’ll need to be large and stable enough to efficiently perform operations. To meet this challenge, researchers at MIT and elsewhere are developing quantum computers based on ultra-compact photonic chips. These chip-based systems offer a scalable

Turning crystal flaws into quantum highways: A new route towards scalable solid-state qubits

Building large-scale quantum technologies requires reliable ways to connect individual quantum bits (qubits) without destroying their fragile quantum states. In a new theoretical study, published in npj Computational Materials, researchers show that crystal dislocations—line defects long regarded as imperfections—can instead serve as powerful building blocks for quantum interconnects.Quantum Physics NewsRead More

Slowing down muon decay with short laser pulses

Muons are unstable subatomic particles that spontaneously and rapidly transform into other particles via a process known as electroweak decay. Altering the speed with which muons decay into other particles was so far deemed a challenging quest, requiring very strong electromagnetic fields that cannot be produced in conventional laboratory settings.Quantum Physics NewsRead More