Off-the-shelf components enable deployment-ready quantum entanglement source

Efficient generation and reliable distribution of quantum entangled states is crucial for emerging quantum applications, including quantum key distribution (QKDs). However, conventional polarization-based entanglement states are not stable over long fiber networks. While time-bin entanglement offers a promising alternative, it requires complex infrastructure. In this study, researchers explore how stable time-bin entangled states can be

Specially engineered crystal reveals magnetism with quantum potential

Researchers at the Department of Energy’s Oak Ridge National Laboratory, working with international partners, have uncovered surprising behavior in a specially engineered crystal. Composed of tantalum, tungsten and selenium—elements often studied for their potential in advanced electronics—the crystal demonstrates an unexpected atomic arrangement that hints at novel applications in spin-based electronics and quantum materials.Quantum Physics

New amplifier design promises less noise, more gain for quantum computers

The low-noise, high-gain properties needed for high-performance quantum computing can be realized in a microwave photonic circuit device called a Josephson traveling-wave parametric amplifier (JTWPA), RIKEN researchers have shown experimentally. This advance stands to speed up development of superconducting quantum computer systems at the 100-qubit scale. The work is published in the journal Physical Review