Quantum communication: Using microwaves to efficiently control diamond qubits

In a first for Germany, researchers at the Karlsruhe Institute of Technology (KIT) have shown how tin vacancies in diamonds can be precisely controlled using microwaves. These vacancies have special optical and magnetic properties and can be used as qubits, the smallest computational units for quantum computing and quantum communication. The results are an important

Direct measurement of a subtle current phase relation shows potential for more stable superconducting qubits

In recent years, quantum physicists and engineers have made significant strides toward the development of highly performing quantum computing systems. Realizing a quantum advantage over classical computing systems and enabling the stable operation of quantum devices, however, will require the development of new building blocks for these devices and other aspects underlying their correct functioning.Quantum