New study reveals quasiparticle loss in extreme quantum materials
A new study by Rice University physicist Qimiao Si unravels the enigmatic behaviors of quantum critical metals—materials that defy conventional physics at low temperatures. Published in Nature Physics Dec. 9, the research examines quantum critical points (QCPs), where materials teeter on the edge between two distinct phases, such as magnetism and nonmagnetism. The findings illuminate
Google’s new quantum chip hits error correction target
Quantum error correction that suppresses errors below a critical threshold needed for achieving future practical quantum computing applications is demonstrated on the newest generation quantum chips from Google Quantum AI, reports a paper in Nature this week. The device performance, if scaled, could facilitate the operational requirements of large-scale fault-tolerant quantum computing.Quantum Physics NewsRead More
Quantum mechanical principle of strong coupling leads to better optical sensors
A team of researchers from the University of Cologne, Hasselt University (Belgium) and the University of St Andrews (Scotland) has succeeded in using the quantum mechanical principle of strong light-matter coupling for an optical technology that overcomes the long-standing problem of angular dependence in optical systems.Quantum Physics NewsRead More