Atoms passing through walls: Quantum tunneling of hydrogen within palladium crystal
At low temperatures, hydrogen atoms move less like particles and more like waves. This characteristic enables quantum tunneling, the passage of an atom through a barrier with a higher potential energy than the energy of the atom. Understanding how hydrogen atoms move through potential barriers has important industrial applications. However, the small size of hydrogen
Symmetry simplifies quantum noise analysis, paving way for better error correction
Researchers from the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, and Johns Hopkins University in Baltimore have achieved a breakthrough in quantum noise characterization in quantum systems—a key step toward reliably managing errors in quantum computing.Quantum Physics NewsRead More