Studies offer new insights into production and structure of heavy hollow atoms

Hollow atoms are special atoms with multiple missing electrons in their inner shells, while their outer shells are still fully or partially filled with electrons. Studying the production mechanisms, internal structure, and de-excitation properties of these excited-state atoms provides insights into quantum electrodynamics and quantum many-body interactions, with applications in fields such as inner-shell ionization

Researchers discover more efficient way to route information in quantum computers

Quantum computers have the potential to revolutionize computing by solving complex problems that stump even today’s fastest machines. Scientists are exploring whether quantum computers could one day help streamline global supply chains, create ultra-secure encryption to protect sensitive data against even the most powerful cyberattacks, or even develop more effective drugs by simulating their behavior

Stoichiometric crystal shows promise in quantum memory

For over two decades, physicists have been working toward implementing quantum light storage—also known as quantum memory—in various matter systems. These techniques allow for the controlled and reversible mapping of light particles called photons onto long-lived states of matter. But storing light for long periods without compromising its retrieval efficiency is a difficult task.Quantum Physics