Multimode quantum entanglement achieved via dissipation engineering
A research team led by Prof. Lin Yiheng from the University of Science and Technology of China (USTC), collaborating with Prof. Yuan Haidong from the Chinese University of Hong Kong, succeeded in generating multipartite quantum entangled states across two, three, and five modes using controlled dissipation as a resource. Their study is published in Science
Controlling atomic interactions in ultracold gas ‘at the push of a button’
Changing interactions between the smallest particles at the touch of a button: Quantum researchers at RPTU have developed a new tool that makes this possible. The new approach—a temporally oscillating magnetic field—has the potential to significantly expand fundamental knowledge in the field of quantum physics. It also opens completely new perspectives on the development of
The playbook for perfect polaritons: Rules for creating quasiparticles that can power optical computers, quantum devices
Light is fast, but travels in long wavelengths and interacts weakly with itself. The particles that make up matter are tiny and interact strongly with each other, but move slowly. Together, the two can combine into a hybrid quasiparticle called a polariton that is part light, part matter.Quantum Physics NewsRead More