Quantum framework offers new approach to analyzing complex network data
Whenever we mull over what film to watch on Netflix, or deliberate between different products on an e-commerce platform, the gears of recommendation algorithms spin under the hood. These systems sort through sprawling datasets to deliver personalized suggestions. However, as data becomes richer and more interconnected, today’s algorithms struggle to keep pace with capturing relationships
Gaussian processes provide a new path toward quantum machine learning
Neural networks revolutionized machine learning for classical computers: self-driving cars, language translation and even artificial intelligence software were all made possible. It is no wonder, then, that researchers wanted to transfer this same power to quantum computers—but all attempts to do so brought unforeseen problems.Quantum Physics NewsRead More
Scientists produce quantum entanglement-like results without entangled particles in new experiment
In the everyday world that humans experience, objects behave in a predictable way, explained by classical physics. One of the important aspects of classical physics is that nothing travels faster than the speed of light. Even information is subject to this rule. However, in the 1930s, scientists discovered that very small particles abide by some