A new approach to probe hadronization via quantum entanglement

Recent physics studies have discovered that quarks and gluons inside protons, which are subatomic positively charged particles, exhibit maximal quantum entanglement at high energies. Entanglement is a physical phenomenon that entails correlations between distant particles that cannot be explained by classical physics theories, resulting in the state of one particle influencing that of another.Quantum Physics

Einstein’s dream of a unified field theory accomplished?

During the latter part of the 20th century, string theory was put forward as a unifying theory of physics foundations. String theory has not, however, fulfilled expectations. That is why we are of the view that the scientific community needs to reconsider what comprises elementary forces and particles.Quantum Physics NewsRead More

Scientists observe the first ‘quantum rain’

In the Quantum Mixtures Lab of the National Institute of Optics (Cnr-Ino), a team of researchers from Cnr, the University of Florence and the European Laboratory for Non-linear Spectroscopy (LENS) observed the phenomenon of capillary instability in an unconventional liquid: an ultradilute quantum gas. This result has important implications for the understanding and manipulation of

Proving quantum computers have the edge

Quantum computers promise to outperform today’s traditional computers in many areas of science, including chemistry, physics, and cryptography, but proving they will be superior has been challenging. The most well-known problem in which quantum computers are expected to have the edge, a trait physicists call “quantum advantage,” involves factoring large numbers, a hard math problem